Metabolic signature of electrosurgical liver dissection.

Authors:
Witigo von Schönfels, Oliver von Kampen, Eleonora Patsenker, Felix Stickel, Bodo Schniewind, Sebastian Hinz, Markus Ahrens, Katharina Balschun, Jan-Hendrik Egberts, Klaus Richter, Andreas Landrock, Bence Sipos, Olga Will, Patrizia Huebbe, Stefan Schreiber, Michael Nothnagel, Christoph Röcken, Gerald Rimbach, Thomas Becker, Jochen Hampe, Clemens Schafmayer
Year of publication:
2013
Volume:
8
Issue:
9
Issn:
1932-6203
Journal title abbreviated:
PLoS ONE
Journal title long:
PloS one
Impact factor:
2.806
Abstract: 
Hepatic electrosurgery generates a metabolic signature with characteristic lipid peroxidation products. Among these, azelaic acid shows a dose-dependent toxicity in liver cells and inhibits wound healing. These observations potentially pave the way for pharmacological intervention prior liver surgery to modify the metabolic response and prevent postoperative complications.In a set of 208 chemically defined metabolites, electrosurgical dissection lead to a distinct metabolic signature resulting in a separation in the first two dimensions of a principal components analysis. Six metabolites including glycolic acid, azelaic acid, 2-n-pentylfuran, dihydroactinidiolide, 2-butenal and n-pentanal were consistently increased after electrosurgery meeting the discovery (p<2.0 × 10(-4)) and the replication thresholds (p<3.5 × 10(-3)). Azelaic acid, a lipid peroxidation product from the fragmentation of abundant sn-2 linoleoyl residues, was most abundant and increased 8.1-fold after electrosurgical liver dissection (preplication = 1.6 × 10(-4)). The corresponding phospholipid hexadecyl azelaoyl glycerophosphocholine inhibited wound healing and tissue remodelling in scratch- and proliferation assays of hepatic stellate cells and cholangiocytes, and caused apoptosis dose-dependently in vitro, which may explain in part the tissue damage due to electrosurgery.Human liver samples were thus obtained during surgery before and after electrosurgical dissection and subjected to a two-stage metabolomic screening experiment (discovery sample: N = 18, replication sample: N = 20) using gas chromatography/mass spectrometry.High frequency electrosurgery has a key role in the broadening application of liver surgery. Its molecular signature, i.e. the metabolites evolving from electrocauterization which may inhibit hepatic wound healing, have not been systematically studied.