RNAi screening identifies mediators of NOD2 signaling: implications for spatial specificity of MDP recognition.

Authors:
Simone Lipinski, Nils Grabe, Gunnar Jacobs, Susanne Billmann-Born, Andreas Till, Robert Häsler, Konrad Aden, Maren Paulsen, Alexander Arlt, Lars Kraemer, Nina Hagemann, Kai Sven Erdmann, Stefan Schreiber, Philip Rosenstiel
Year of publication:
2012
Volume:
109
Issue:
52
Issn:
0027-8424
Journal title abbreviated:
P NATL ACAD SCI USA
Journal title long:
Proceedings of the National Academy of Sciences of the United States of America
Impact factor:
9.423
Abstract: 
The intracellular nucleotide-binding oligomerization domain-2 (NOD2) receptor detects bacteria-derived muramyl dipeptide (MDP) and activates the transcription factor NF-κB. Here we describe the regulatome of NOD2 signaling using a systematic RNAi screen. Using three consecutive screens, we identified a set of 20 positive NF-κB regulators including the known pathway members RIPK2, RELA, and BIRC4 (XIAP) as well as FRMPD2 (FERM and PDZ domain-containing 2). FRMPD2 interacts with NOD2 via leucine-rich repeats and forms a complex with the membrane-associated protein ERBB2IP. We demonstrate that FRMPD2 spatially assembles the NOD2-signaling complex, hereby restricting NOD2-mediated immune responses to the basolateral compartment of polarized intestinal epithelial cells. We show that genetic truncation of the NOD2 leucine-rich repeat domain, which is associated with Crohn disease, impairs the interaction with FRMPD2, and that intestinal inflammation leads to down-regulation of FRMPD2. These results suggest a structural mechanism for how polarity of epithelial cells acts on intestinal NOD-like receptor signaling to mediate spatial specificity of bacterial recognition and control of immune responses.