Characterization of SARS-CoV-2 public CD4+ αβ T cell clonotypes through reverse epitope discovery.

Elisa Rosati, Mikhail V Pogorelyy, Anastasia A Minervina, Alexander Scheffold, Andre Franke, Petra Bacher, Paul G Thomas
Year of publication:
Journal title abbreviated:
Journal title long:
Unknown Journal
The amount of scientific data and level of public sharing produced as a consequence of the COVID-19 pandemic, as well as the speed at which these data were produced, far exceeds any previous effort against a specific disease condition. This unprecedented situation allows for development and application of new research approaches. One of the major technical hurdles in immunology is the characterization of HLA-antigen-T cell receptor (TCR) specificities. Most approaches aim to identify reactive T cells starting from known antigens using functional assays. However, the need for a reverse approach identifying the antigen specificity of orphan TCRs is increasing. Utilizing large public single-cell gene expression and TCR datasets, we identified highly public CD4 <sup>+</sup> T cell responses to SARS-CoV-2, covering >75% of the analysed population. We performed an integrative meta-analysis to deeply characterize these clonotypes by TCR sequence, gene expression, HLA-restriction, and antigen-specificity, identifying strong and public CD4 <sup>+</sup> immunodominant responses with confirmed specificity. CD4 <sup>+</sup> COVID-enriched clonotypes show T follicular helper functional features, while clonotypes depleted in SARS-CoV-2 individuals preferentially had a central memory phenotype. In total we identify more than 1200 highly public CD4+ T cell clonotypes reactive to SARS-CoV-2. TCR similarity analysis showed six prominent TCR clusters, for which we predicted both HLA-restriction and cognate SARS-CoV-2 immunodominant epitopes. To validate our predictions we used an independent cohort of TCR repertoires before and after vaccination with <i>ChAdOx1</i> , a replication-deficient simian adenovirus-vectored vaccine, encoding the SARS-CoV-2 spike protein. We find statistically significant enrichment of the predicted spike-reactive TCRs after vaccination with <i>ChAdOx1</i> , while the frequency of TCRs specific to other SARS-CoV-2 proteins remains stable. Thus, the CD4-associated TCR repertoire differentiates vaccination from natural infection. In conclusion, our study presents a novel reverse epitope discovery approach that can be used to infer HLA- and antigen-specificity of orphan TCRs in any context, such as viral infections, antitumor immune responses, or autoimmune disease.<h4>Highlights</h4>Identification of highly public CD4+ T cell responses to SARS-CoV-2Systematic prediction of exact immunogenic HLA class II epitopes for CD4+ T cell responseMethodological framework for reverse epitope discovery, which can be applied to other disease contexts and may provide essential insights for future studies and clinical applications.